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Abstract The integrable system is introduced based on the Poisson rs-mahix srmchwe. This 
is a generalization of the Gaudin magnet, and in the SL(2) case is isomorphic to the generalized 
Neumann model. The separation of variables is discussed for both the classical and quantum 
CaseS. 

1. Introduction 

The classical integrable systems has been formulated in terms of the classical r-matrix [I]. 
In one sense, the system is proved to be integrable when we can perform the separation of 
variables; the reduction of a multi-dimensional system to a set of one-dimensional systems 
(see [2] for a review). Although the separation of variables has been widely known as the 
Hamiltonian-Jacobi equation, Sklyanin proposed a new technique (functional Bethe ansatz), 
which is closely related with the (quantum) inverse scattering method. The functional Bethe 
ansatz method was first applied to a classical top [3], and further applications, to the Toda 
lattice, Gaudin magnet, and Heisenberg spin chain, have been carried out. This technique 
is a new tool in studying integrable systems. 

We briefly review the separation of variables for the Gaudin magnet [4] in the classical 
case. The fundamental formulation of integrable system is based on the classical r-matrix 
structure 

I 2  I 2 
IL(U), LW} = [r(u - U), LW+ L(U)I. (1.1) 

Here we have used the standard notation, L(u) = L(u) 8 1 and L(u) = 1 8 L(u). As an 
example of the L-matrix satisfying the linear Poisson structure (1.1). we can take 

I 2 

sj L(u) = z+ -. N 

U - zj j=1 

Here Sj ( j  = 1,. . . , N) is a classical SL(n) spin matrix, and its elements Sf* (U, b = 
1, . . . , n) satisfy the Poisson relation ' 

(Sj"b, SLd] = aja . (s" sj"d - ado SFb J >  (1.3) 
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and TrSj is the Casimir element. We suppose that matrix Z is mceless, TrZ = 0. The L- 
mahix (1.2) appears as a quasi-classical l i t  of the inhomogeneous Heisenberg XXX-spin 
chain [5,6], and satisfies the linear Poisson relation (1.1) with the classical r-matrix 

P 
r(u) = -. 

U 
(1.4) 

The mahix P means a permutation mahix, 
Note that r-matrix (1.4) is a rational solution of the classical Yang-Baxter equation 171 

= 8"d8bc, which satisfies P x @ y  = y@x. 

[ M u ) .  rlz(u)l + [rdu).  r d u  + U)] + [ r13(~+ U). r d u ) l =  0. (1.5) 
Once the L-matrix satisfies the Poisson structure (l.l), the model can be proved to be 

(1.6) 

integrable in the Liouville sense. If functions of the L-matrix, rm(u), are defined as 
1 
m 

&(U) = - Tr L(u)m 

one can see that the rm(u) are spectral invariant, i.e. 

( s ( u ) ,  rm(u)l= 0. (1.7) 
The identity (1.7) shows that the rm(u) are generating functions of the constants of motion. 
The first non-hivial invariant follows from rz(u): 

where Hj is the Hamiltonian of the SL(n) Gaudin magnet 

This model was introduced by Gaudin as an integrable spin system with long-range 
interaction [8]. Due to the involutiveness of rm(u), one can see that the Hamiltonian 
of the SL(n) Gaudin magnet is Poisson commutative, i.e. 

[ H j , H k } = o  f o r j , k = 1 ,  ..., N. (1.10) 

The complete integrability of the model in the Liouville sense can be proved directly 
from (1.7); when we introduce quantities z ; , ~  by 

(1.11) 

we can see that the quantities r;.j (m.= 2,. . . , N; j = 1,. . . , n; (Y = 1,. . . , m - 1) form 
a commutative family of Nn(n - 1)/2 independent Hamiltonians. 

For this type of the Gaudin magnet (1.9), the separation of variables (functional Bethe 
ansatz) has been widely studied in both classical and quantum cases 14, 9-14]. Let d(L) 
and B(L) be certain polynomials of degree n(n - 1)/2 in matrix elements Lob. When we 
define variables XJ and pj  by 

W - b j ) )  = 0 Pj  = A W j ) )  (1.12) 
one sees that variables xj and pj are canonically Poisson conjugate 115-171 

b j x j , x k } = o  { p j , p k } = o  b j . X k } = 8 j k .  (1.13) 
This analysis, which is called the separation of variables, makes it possible to calculate the 
energy spectrum for the quantum Gaudin magnet. 
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In this way, we can perform the separation of variables for integrable systems formulated 
in the linear Poisson relation (1.1). Some of integrable systems, e.g. nonlinear integrable 
equations on finite segment, are formulated in terms of another Poisson structure; there 
exists an 7s'-Poisson structure [18,191 

(1.14) 
Here r and s are matrix structure constants. We remark that the s-mahix depends 
on the sum of the spectral parameters, while the r-matrix on their difference. The 
Poisson structure (1.14) can be viewed as a classical limit of the boundary Yang-Baxter 
equation 1201. which is used to formulate the quantum spin chain with an open boundary. 

In this paper we shall study the separation of variables for the BC-type integrable system 
formulated by the rs-Poisson structure (1.14). In section 2, we introduce the Bc-type SL(n) 
Gaudin magnet. We give classical r- and s-matrices, and prove their integrability. We relate 
the Hamiltonian of the BC-type SL(2) Gaudin magnet to the generalized Neumann model 
in section 3. The separation of variables is also studied. In section 4, we turn OUT attention 
to the quantum case. The energy spectrum is given based on the separation of variables. 
Section 5 is devoted to discussions and conclusions. 

2. Gaudin magnet with a boundary 

The quantum Gaudin magnet, whose Hamiltonian has a form (1.9), was first introduced in [8] 
as an integable spin system with long-range interaction, and solved by use of the coordinate 
Bethe ansatz. As reviewed in section 1, this original Gaudin magnet can be formulated with 
the linear Poisson structure in classical case (1.1). In this section, we consider the SL(n) 
Gaudin magnet with boundary @C-type Gaudin magnet). The dynamical variables of this 
model are the classical SL(n) spin qb ( a ,  b = 1, . . . , n; j = 1,. . . , N) satisfying the 
Poisson bracket (1.3). Consider the modified L-matrix 

where the 'reflected' classical spin s is defined as 

Note the difference compared with the usual L-operator (1.2). The second term in (2.1) is 
due to the effect of the reflection; the classical spin S, is located at coordinate z j ,  while the 
'reflected' spin sj is at -zj .  For this reason we say that the system has a 'boundary'. One 
can easily checkthat themodified L-operator (2.1) satisfies the linear Poisson structure (1.14) 
with the rational r-matrix (1.4) and s-matrix - 

P 
S(U) = - (2.3) U 

a b , c d  where we use the notation P = (-)"+bF"'Sb.. 
Let us define functions r,,,(u) of the matrix L(u) (2.1) as 

1 
& ( U )  = - TrL(u)"Z m (2.4) 

From the Poisson structure (1.14), it can be shown that the functions rm(u) are the spectral 
invariants of the dynamical system 

I S ( U ) ,  GI(v)l = 0. (2.5) 
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The first non-trivial invariant is given from z-(u)  as 

z&) = 4 Tr L(u)’ 

Tr Sf 2 z j  Hj l N  1 N 
- 

j=1 (U - Z j ) ( U  + Z j )  + 5 g( (U -Zj)* + (U f Zj)’ 

where Hj has the form 

The involutiveness of the spectral invariants sm(u) indicates the Poisson commutativity of 
the Hamiltonian Hj 

{ H j ,  H k }  = 0 for j,k = 1.2, ... , N .  (2.8) 

We call Hj the Hamiltonian of the SL(n) Gaudin magnet with a boundary. Different from 
the original Gaudin magnet (1.9), the Hamiltonian Hj includes interaction terms between 
classical spins Sj and ‘reflected’ spins sj. By calculating the residues of the z,,,(u) (2.4) as 
in the case of original Gaudin magnet (Lll), one can get the ‘higher-order’ Hamiltonian 
?;,j of the Gaudin magnet. The existence of a commutative family [ z ; , ~ ]  supports the 
complete integrability of the model in the Liouville sense. 

3. Separation of variables 

In this section we first show the isomorphism of the N-site SL(2) Gaudin magnet and 
the N-dimensional generalized Neumann model, and then study the separation of variables 
based on the technique of Sklyanin. In SL(2) case we can define the classical spin matrices 
Sj and sj in the L-operator (2.1) as 

where uL denotes the Pauli spin matrix. These spin variables satisfy the following Poisson 
relations: 

The above Poisson structures for spin’variables can be realized with new variables xj and 
P j  as 

= fi$ SY J - --z i i  Pj  ’ S; -$xjpj (3.3) 
where [ x j ,  pjl j = 1,. . . , N }  are canonical variables satisfying the Poisson relations 
b . X  , k]  = [ p j ,  pk]  = 0, and {x i ,  pk]  = 8,. In this case the Cashi i  element is set to 
be zero, TrSj = 0. In terms of canonical variables, one can obtain the Hamiltonian from 
the spectral invariant ?’(U) as 

Q(U) = 4 TrL(u)* 

(3.4) 
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where Hj is calculated to be 

This Hamiltonian can be viewed as a generalization of the Neumann model [9,111. This 
proves the fact that the N-dimensional generalized Neumann model (3.5) is isomorphic to 
the N-site BC-type SL(2) Gaudin magnet (2.7). 

Now we study the separation of variables for the generalized Neumann model (3.5). 
Define A(u) and B(u) as 

4) = LII(U) N u )  = LIZ(U). (3.6) 

The linear Poisson structure. (1.14) includes relations between functions A(u) and B(u); 

M u ) ,  = 0 {Nu), B(v)l = 0 

Both the matrix elements A(u) and B(u) Poisson-commute among themselves. 
We choose separable coordinates as zeros of the offdiagonal element of the Z-operator 

for (Y = 1.2,. . . , N - 1. (3.8) 
Note that U = -U, is the solution if U = U, solves the equation B(u) = 0. By use of a set 
of variables U,, we further introduce the canonical variables by 

B(&u,) = 0 

v, =-A(ua). (3.9) 

From the Poisson relations (3.7) one can see that the variables uEI and U, are canonically 
conjugate, i.e. 

[Uu, us1 = 0 {U,, us1 = 0 [U,, vs1 = &#. (3.10) 

The first two Poisson relations can be proved straightforwardly. The thud relation follows 
from: 

The Poisson relations (3.10) show that the U, and U, are canonically conjugate variables, 
and that the generalized Neumann model (3.5) is separated by transforming the dynamical 
variables as 

{ x j , p j l j = l ,  ..., N 1 4 { u a , u a ~ j = l  ,.... N-l} .  

With the variables U. and U,, the action W of the generalized Neumann model (3.5) is 
written in separated form as 

N-I 
w = j IJ,du,. 

U = l  
(3.11) 

The separated variables U. and U. can be written explicitly in terms of the xj and pi .  By 
definition (3.8) we can solve the coordinates pj as 

(3.12) 
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with z xj  zip;. The canonically conjugate variables U, are also solved as 

(3.13) 

We remark that the relation between {U,, U-] and the Hamiltonian Hj is given by the spectral 
invariants r& = u.) as 

zj  nj N 

= (U. - Z j ) ( U ,  + Z j ) '  
(3.14) 

4. The quantum case 

In this section we consider the quantization of the BC-type Gandin magnet (2.7). For brevity 
we study the SL(2) case. We set the L-operator as - N 

j=1 U - z j  u + z j  

where the spin operator Sj and reflected spin operator sj are defined as 

Here the operators S; and SF denote the bases of the 4 2 )  Lie algebra, and they satisfj 
the commutation relations 

Is;, $1 = +jk 

( S y +  ;(spy + sys;, = t,@j + 1) 

[ST. SJ = 2Sj6jk 
(4.3) 

ej E 4 / 2 .  
We have set l j  to be the spin of the j th  site. One can check from direct calculations that 
the L-operator (4.1) satisfies the quantum analogue of the linear Poisson sfnchue (1.14). 
namely 

2 1 2 1 2 [h, L(~) I  = [r(u -U), LW+ LWJ + [se +U), -LW+ LW (4.4) 
In this case the constant r- and s-matrices are defined as 

1 1 
S(U) =uz r(u) U* . (4.5) 

m e  conserved operators are generated in the same way as in the classical case: the 

P 
r(u) = -- 

U 

trace of the L-operator (2.4). We get the first non-trivial operator from %(U) 
1 

?Z(U) = - Tr L(u)' 
2 

Here the quantum operator 4 is the Hamiltonian of the quantum BC-type Gaudin magnet 

(4.7) 
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From the commutativity of the generating function ?&), we can see that the operators l?j 

are commutative: 

[F&, & I =  0 f o r j , k = I  ,..., N, (4.8) 

which proves the quantum integrability of the BC-type Gaudin magnet. Note that the operator 
i?j (4.7) has been appeared in recent studies of the generalized Knizhnik-Zamolodchikov 
(a) equation [21,221. 

The separation of variables for the quantum case can be performed as follows. When 
we define operators A(u) and B(u) as 

A@) = h ( u )  B(u)  =&(U) 

we obtain from the quantum rs-structure (4.4) that the commutation relations among 
operators A(u) and B(u) can be written as 

[B(u),  B(v)l = 0 [A@), A(v)l = 0 
(4.9) 

The entire calculation is essentially the same as in the classical case. ~n the quantum case, 
we can also introduce the 'canonical operators' U. and v, by 

B ( f u , )  = 0 
U, = A(u,). 

(4.10) 

These operators U. and v. satisfy the commutation relations 

[U,, us1 = 0 [u., vs1 = 0 [U,, V a l  = Jas. (4.11) 

To perform the separation of variables (4.10) for the quantum BC-type Gaudin magnet, 
we use the realization of the spin operators, Sj and S;: 

.(4.12) 

With this realization, the functional equation, B(ku,) = 0, does not include differential 
operator, and can be solved easily. The result is 

(4.13) 

where we set z = zk z k y .  When we change the variables from [ x j }  to [a.}, we can see 
that operator U, is represented in terms of U. by 

where we use the function A(u) 

(4.14) 

(4.15) 

We remark that identification of operator v, (4.14) is consistent with the commutation 
relations (4.11). A set of operators (U,, U,] is called the separated operator. 

We have now completed separating the variables for the quantum SL(2) Gaudin magnet. 
In the rest of this section, we show that the energy spectrum of the. Gaudin magnet can 
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be calculated from the functional Bethe ansatz. By definition of the generating function, 
h ( u )  = Tr L(u)~ ,  one can see that 

U, 2 - q u a )  = 0 (4.16) 

which corresponds to (3.14) in the classical case. With the operator realization of U, 
obtained in (4.141, we can read off the identity (4.16) as being the differential operator for 
the separated spectral problem 

+"(U) - ZA(u)ll'(u) + (n2(u) - A'(~))+lcu) = czb)+(u) (4.17) 

where Q(U) is an eigenvalue of the operator &(U) (4.6). This equation can be seen to be 
a generalized Lam6 equation [IO]. To solve this second-order differential equation (4.17). 
we assume that the wavefunction @(U) is apolynomial of U, and that the zeros of @(U) are 
denoted as &Au [4] 

(4.18) 

Substituting the wavefunction $(U) in the differential equation (4.17), we can see that the 
eigenvalue Ej of 4 is given by 

whete the function x ( u )  is defined fiom the wavefunction +(U) to be 

(4.19) 

(4.20) 

Notice that the zeros of the wavefunction @(U) should be fixed to satisfy a set of equations 

which follows from the conditions in cancellation of the residues at U = A, in (4.17). This 
equation is a quasi-classical limit of the Bethe ansatz equation for the open-boundary spin 
chain, and plays a crucial role in the construction of the integral solution for the generalized 
KZ equation [221. 

5. Discussion 

In this paper we have introduced the generalized Gaudin magnet. The Hamiltonian is written 
as 

This model can be regarded as the Gaudin magnet with a boundary, and be formulated in 
terms of the 'classical' reflection equation (1.14). As in the case of the original Gaudin 
magnet, this model has many interesting aspects; in particular for the SL(2) case, the model 
is proved to be isomorphic to the generalized Neumann model. In both the classical and 
quantum cases we have performed the separation of variables. In this analysis the eigenvalue 
problem can be reduced to the second-order differential equation (Lam6 equation). We can 
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obtain the so-called quasi-classical Bethe ansatz equation from this differential equation. 
The XXZ-Gaudin magnet with boundary will be analysed with the same method. 

The point of the separation of variables (functional Bethe ansatz) is to take zeros of 
the wavefunction @(U); the zeros may be identified with the ‘rapidities’ of the spin-wave 
from the view point of the inverse scattering method. This kind of analysis was used in 
recent studies of the Asbel-Hofstadter problem [23]. From the viewpoint of q-polynomial 
theory the study of Askey-Wilson polynomial in terms of quantum rs-structure may be an 
interesting problem [24]. 
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